2018년 3월 31일 토요일

설비진단이란? (설비예지보전- 설비보전의 방법)

설비진단이란(설비예지보전설비보전의 방법)
-------------------------------------------------------------------------------------
사람이 몸이 아파서 병원에 가면 의사는 진단을 하기 전에 여러 가지 검사를 한다엑스레이청진기심전도혈액검사 등.. 그 다음 몸이 어디가 이상이 있는지 판단하고 조치를 취한다심장을 가진 사람을 진단한다는 것은 회전하는 기계를 진단하는 것과 비교할 수 있다기계를 진단하는 기술있을까이것이 바로 회전기계의 설비진단이다그리고 자격을 가진 진단분석가가 있다.

설비진단(Machine fault analysis; Health analysis)

설비진단이라는 용어는 국내에서는 2000년대 이후에 비로소 자리를 잡았다고 볼 수 있다.  풀어서 말하면 '회전기계의 결함분석'이라고 할 수 있지만국내에 이 종류의 기술이 처음 도입된 시기인 1990년대 중반에 국내 수입업체들이 번역하면서 만들어 낸 용어였고 국내 소음진동공학회에서 만들어진 설비진단강습회설비진단자격인증원이 창립된 후로 용어가 정착된 것으로 판단된다.
어쨌든대한민국의 설비진단 관련 선구자 들은 용감하게도지금도 그렇지만국내에 이 용어를 근거로 계측기 판매영업을 하기 시작함과 더불어 고급 설비진단 엔지니어링 기술들도 도입하였다
설비진단의 개념은 주로 장치산업(화학플랜트시멘트제지철강전력 등 연속기계 시스템인 플랜트로부터 제품을 양산하는 산업을 말함)에서 적용하기에 매우 적합하여 설비진단이라는 단어 대신에 다른 용어 (회전기계진단 또는 기계진단)를 사용하기도 하였으나 지금은 많은 사람들로부터 대명사로서 인식이 되었고 오히려설비라는 단어를 가장 많이 사용하고 있는 건설산업에서는(보일러공조배관 등을 말함설비진단이라는 용어에 익숙하지 않다.
이 설비진단은 플랜트 내에서 존재하는 수많은 회전기계(모터 및 터빈엔진 등으로 구동하는 기계 조합)들 즉, "살아서 가동하고 있는 기계"들을 진단하고 원인을 해결하여 수명을 증진시키는데 그 목적을 두고 있는 분야(PDM)에서 중요한 역할을 담당하고 있다왜냐하면 PDM(예지보전)을 위해서는 사람을 진단하는 것처럼 상세하게 설비(기계)의 현재상태를 가장 잘 파악해야 하며 다음과 같은 많은 측정장비와 진단기술(설비진단기술)이 근본이 되어야 하기 때문이다(진동윤활초음파열화상온라인모니터링레이져 얼라인먼트발란싱전류분석 등).


키워드
PDM, 예지보전설비진단진동기계진단.

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 3월 24일 토요일

신호 필터(Filter)

신호 필터(Filter)
-------------------------------------------------------------------------------------
텔레이젼에서 화면이 노이즈가 많고 화상이 고르지 못하면 노이즈가 있다고 했다전기통신 기술자는 안테나를 세우거나 케이블에 ‘Noise filter’를 장착하고자 하는 방법을 취한다그러고 난 후에는 화면에 깨끗하고 음성이 맑게 들린다복잡한 신호에서 원하는 신호를 추출하려면 주파수(Frequency)로 판단하여 신호를 필터링(filtering)을 하게 되면 된다잡음의 주파수를 제외해도 되고 원하는 대역만을 추출해도 된다그 주파수가 저주파이면 저주파를 통과시키고 고주파가 마음에 들지 않으면 고주파를 제외하면 되는 것이다그러나 실제로 원인이 되는 노이즈를 알지 못하거나 그 영역이 혼선되어 있으면 여간 까다로운 작업이 아니다물론 진동으로 온라인모니터링을 하는 상시 감시시스템에서도 마찬가지이다노이즈를 알람신호로 볼 수는 없으니 말이다.



Signal filter processing

AD변환(ADconverter)시 발생하는 Aliasing의 신호를 거르는 단계를 ‘Anti-Aliasing filter’라고 했다이 것은smapling전에 Low pass filter를 사용하는 것으로 주의점은 이름에 있는 ‘low’를 통과(합격)시킨다는 것이다는 것을 명심한다잘못하면 그 것만 제외시킨다고 혼동할 수 도 있기 때문이다따라서 이 필터에 대한 정의는 긍정적인 사고가 원칙인 유럽의 용어사용을 근원으로 한다진동파형 신호 측면에서 살펴보면 어느 범위의 주파수 성분을 차단하고 나머지 부분만을 통과시키는 것을 필터 처리(filtering process)라 하고이 때 차단하는 주파수를 차단 주파수(cutoff frequency)라고 한다이 필터의 종류는 다음과 같다.

  ¨ 저역 통과 필터 (Low Pass Filter) : 주파수가 낮은 성분은 그대로 통과높은 성분은 차단한다.                 
  ¨ 고역 통과 필터 (High Pass Filter) : 주파수가 낮은 성분은 차단선정된 주파수이상만 통과시킨다.                 
  ¨ 대역 통과 필터 (Band Pass Filter) : 하한 주파수에서 상한 주파수까지의 주파수 성분만 통과.
  ¨ 대역 차단 필터 (Band Reject Filter, Notch Filter) : 하한 주파수에서 상한주파수까지 성분만 차단

여기서 주의할 점은 대역통과 필터의 특성은 사각파형 모양이 되는 것이 이상적이다그러나양 끝의 주파수가 차단주파수폭이 대역폭 (Bandwidth) 으로 될지라도 실제로 산 모양 의 특성이 되기 때문에 통상 3 dB 저하하는 주파수의 양쪽구간을 감안하여 통과 대역폭(Bandwidth)을 설정 하게 된다.

키워드
Filter, band pass filter, low pass filter, Alasing, 에일리어싱샘플링, AD컨버터노이즈필터차단주파수, cut off frequency

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 3월 17일 토요일

동기화 시간 평균(Synchronous time averaging)

동기화 시간 평균(Synchronous time averaging)
-----------------------------------------------------------------
모든 평균화 기법들은 대체로 트리거(trigger)에 의한 이벤트인가아닌가?로 구분할 수 있다이러한 트리거 이벤트에 의한 평균화를 동기화평균(synchronous averaging)’이라고 한다이 경우에 트리거 신호에 따라서 윈도우가 시작되고 그 틀에 맞춰 신호의 취득이 이루어 진다트리거 신호와 진동신호간의 위상관계 등을 알아낼 수 있고 tach펄스에 의해서 주파수 그래프에 표시할 수도 있는데 이를 오더트랙킹(order tracking)’이라고 부른다이 경우에는 주파수가 변화하더라도 그래프에는 order(차수)와의 관계만 표시되는 특징이 있다.



Synchronous time Averaging(동기화 시간평균)
샘플링요율(sampling rate)은 최대주파수(fmax) 2.56배를 한 것으로 다시 샘플수는 라인수에 2.56배를 한 것과 같다시간 평균화는 주파수도메인에서 수행된다잡음과 신호는 모두 평균값으로 평균화된다신호가 한 번 약간다르게 변화한다면 주파수에는 ‘skirt’효과로 광대역 주파수군에 편입된다아주 비슷한 주파수군 들도 이렇게 포함되어 함께 표현된다. ‘동기화시간평균(synchronous time averaging)’은 트리거에 의해서 주파수도메인이 아닌 time domain에서 수행하는 평균화를 말한다. 이렇게 되면 노이즈의 발생을 편입하는 것이 아니고 원천적으로 비동기화(non-synchronous)성분을 차단한다예를들어30Hz tach 펄스로 트리거하여 10배 차수(10X TS)의 진동을 보려한다면 최소 30*2.56*10=768Hz의 샘플링 rate를 설정하여야 한다이 경우에 tach펄스에 동기화되지 않은 모든 요소는 ‘0’으로 평균화될 것이다이 밖에 샘플링 rate tach 펄스에 묶여 있기 때문에 주파수로 변환하더라도 작은 변화의 주파수들이 skirt효과에 편입되는 것 같은 현상이 아예나타나지 않는다.
동기화시간평균은 아주 작은 진폭을 가진 신호나 다양한 회전수들이 함께 나타나는 기어박스, roll머신 등에 유용하게 사용할 수 있다특히 특정 주파수만을 관찰하고 싶어서 그 이외의 잡음으로 고려하는 비동기성분을 제거하려 할 때 아주 효과적이다응용하여 각 요소들을 분리하여(각 회전수에 다른 tach 펄스측정된 결과로 에너지의 분배를 파악할 수 도 있다.

키워드
평균화신호처리잡음제거진동신호, Averaging, synchronous, skirt효과

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 3월 10일 토요일

Crest factor(CF, 융기인자)

Crest factor(CF, 융기인자)
-----------------------------------------------------------------
원신호(Raw data)의 근원이 되는 시간파형신호(waveform)은 어떤 형태로도 변환할 수 있는 시간-진폭의 그래프로 표현된다이 시간파형의 형태는 규칙적 또는 불규칙인 것으로 구분할 수 있으며 통계적인 것 비통계적인 것으로 또한 구분될 수 있다그런데 이 시간의 형태를 조금 더 세밀히 관찰해 보면 뾰족한 것과 뭉툭한 것도 구분해 낼 수 있는데 이러한 신호의 특징은 충격이 있는가 없는가를 확인할 때 사용된다면 아주 유용할 것이다베어링이나 기어의 고체와 고체간이 닿아 발생하는 충격신호처럼 말이다.



Crest factor(CF)
뽀족한 제일 꼭대기 부분을 ‘peak’라고 하며 위로 불쑥 
튀어나온 형상을 ‘crest(隆起)’라고 한다.  신호의 형상만 가지고 판단한다면 둥근형태의 정현파(Sinusoidal wave)는 이상적인 파형으로 매번 소개되며 제일 위는 피크로 에너지의 면적개념(RMS)는 피크의0.707배로 나타낼 수 있다여기서 CF는 다음과 같이 정의된다.

Crest factor (CF)= Peak / RMS


고체와 고체간의 점 또는 선접촉에서는 자연적으로 
충격(Impact)이 발생하게 되고 예를들면 베어링과 결함부위와의 마찰기어와 기어간의 접촉불규칙적인 충격에서 RMS보다 높은 Peak가 관찰된다.  , CF값이 높으면 충격이 높게 관찰되는 파형이라는 것이다실제로 이 파라미터는 진동의 결함을 모니터링하는데 사용된다경험적으로 채집된 waveform CF값이 ‘5’이상 넘을 경우에는 좋지 않은 상태(장기간 사용이 불가한 가혹한 충격진동이 관찰되는)로 판단할 수 있다.
그러나 모든 현장에서 결함의 근원을 CF로 잡아낼 수 있는 것은 아니다복잡한 기계인 경우에는 CF로 그 상태를 표현하기에는 부족하며 유사한 기능인 ‘Kurtosis(첨예도)’, 고주파의 stress wave envelope필터링하여 표현한 demodulation, Peakvue 등으로 다양한 기준을 적용하여 진단한다참고로 CF의 역수를 ‘form factor’라고 하여 정현파에 가까운 정도를 가늠할 때 사용하기도 한다.

키워드
베어링진단진동신호첨예도, kurtosis

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 3월 3일 토요일

회전속도의 측정

회전속도의 측정
-------------------------------------------------------------------------------------
회전기계는 원동기(모터터빈내연기관)로 인한 회전력()을 이용하여 다양한 방식으로 활용되고 있다회전기계의 성능과 규격은 회전수와 관련되어 있는데 주로 유체용량플랜트내 공급동력전원설계 등과 더불어 회전수는 반드시 알고 있어야 하는 정보이다그래서 원동기에는 RPM(분당회전수)이 직접 표기되어 있다진동을 이용한 설비진단에도 물론 회전수 정보가 필수적이다단일 회전수로 구동되는 설비는 원동기에 적힌 정격회전수로 현재의 회전주파수를 추측할 수가 있으나 가변속 설비 및 수송기계(철도자동차철강항공)와 공작기계 등에서는 현재의 회전수(RPM, Hz)를 직접 측정할 수 있어야 이후의 분석이 가능하다.


Encorder, RPM센서, Tachometer, key phasor

회전수를 측정하는 방법을 부르는 센서의 명칭은 Encorder, RPM센서, Tachometer, key phasor등으로 부르고 검색할 수 있다.

우선자동제어생산현장에서 가장 많이 사용되는 ‘encorder’는 회전시 회전수와 회전자의 위치(phase)를 파악하여 문개폐개폐정도생산속도제어방향과 수준등을 파악할 때 사용하며 대체로 작고 다양한 형태와 다양한 정밀도를 산출한다.

RPM센서는 반복 정보가 필요한 회전하는 기계요소 표면에 반사판을 부착하여 적외선과 반사광의 횟수로voltage가 발생하는 pulse의 회수를 읽는 원리이며 다른말로 ‘tachometer’라고 부르기도 한다대체로 정밀도가 그렇게 높지는 않고 광신호가 송수신가능한 깨끗한 지역에 설치하며 설비진단 진동분석을 위해 설치가 간편하고 가격이 저렴하여 필요한 정보의 취득전원의 적용편리성에서 회전수를 진동신호와 같이 취득하는 방법으로 가장 많이 사용된다.

반사판이 불리한 밝은 현장지저분한 현장이라면정밀도가 높고 내구성이 좋은 센서를 원한다면‘proximity probe type, KEY phaser’를 사용하면 된다이 것은 ‘eddy current’의 원리를 이용한 것으로 초기설치를 감수하고 회전체가 도체라면 최고의 방법으로 볼 수 있다.

이러한 최전수 측정센서들을 이용하여 회전수를 산출하면 그 결과를 이용하여 타공정에 이용되는데 생산량부하율이동상태 등으로 활용되는 것이 그 예이며 분석용으로 사용되는때는 진동설비진단에서 ‘1xTS, 1xRPM’등으로 기준 회전수로 이용하여 기계의 질량불평형(Imbalance), 축정렬불량(Misalignment), 기계적이완(Mechenical looseness)’등의 진단의 결과를 산출할 수 있는 것이다.
그런데 경험상 여기서 회전수센서의 사용에 주의할 사항이 있는데 설치와 신호의 셋팅에서 매우 정확히 확인하여야 한다왜냐하면 대체로 pulse 데이터를 신호로 사용하는데 세심한 조절이 필요하고 설비의 재가동이 어려운 현장이라면 자칫 회전수의 취득오류로 인해서 이 것에 trigger가 설정된 진동신호나 압력 및 온도신호의 취득장치까지 연이어 전혀 시동도 못할 수도 있기 때문이다.

키워드
Trigger, 트리거진동 트리거회전수센서, RPM센서, tachometer, 타코스트로보스코프키페이져, Key phasor

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr