2018년 6월 2일 토요일

진동을 위한 기본단위

진동을 위한 기본단위
------------------------------------------------------------------------------------
진동을 표기하고 방법은 어떠한 단위가 사용되며 힘의 단위질량의 단위진폭의 단위탄성의 단위 등은 기본단위와 혼합단위로 구성된다또한 힘과 에너지 그리고 파워의 구분을 할 수 있어야 하며 주파수와 진폭의 종류는 반드시 알고 있어야 한다진동이 어렵다고 하는 것은 진폭의 표기가 여러 개로 나뉘고 있기 때문이라고 해도 맞다이를 모두 파악하기 위해서는 우선 질량으로 파생된 단위를 살펴보고 그 다음에는 그래프에 표기되는 X축과 Y축의 표현에는 어떠한 것이 있는지를 아는 것이 중요하다.  


Force, Energy, Power의 구분
질량에 가속도를 곱하면 힘(Force)가 된다힘은 관성력탄성력부력,.. 등으로 달리 부르며 사용되는데 힘에 거리를 곱하면 운동이 되면서 에너지()가 된다그리고 시간당 투입되는 에너지가 바로 동력(Power)가 되는 것이다진동의 표현은 보통 힘으로 균형을 맞추지만 에너지로 운동방정식을 표현할 때도 있으므로 적어도 진동을 공부하는 우리는 단어의 표현에 착오가 없어야 한다.

구분
질량(Mass)
(Force)
(Energy)
동력(Power)
수식
m
F
E
P
단위
kg
N(SI단위=kgm/s²) ,
Kgf(공학단위=9.8N)
J (Nm)
W(Nm/s, J/s)
HP(0.746w)
물리적의미
질량
F=ma, (질량으로 인한 관성력질량과 가속도의 곱)
운동과 진동의 움직임힘과 거리의 곱(운동과 위치탄성)
초당 발휘할 수 있는 에너지
용도
물체의 질량
운동방정식관성력탄성력감쇠력가진력원심력부력, …
에너지방법 운동방정식운동에너지위치에너지
엔진의 동력표기산업기계 및 가전기기 등 모든 기기의 소비동력표기


All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr 

관련 Tag
 파워에너지운동방정식


2018년 5월 26일 토요일

진동과 초음파(정의 및 용도)

진동과 초음파(정의 및 용도)
-----------------------------------------------------------------------------------
진동과 소음은 매질인 고체와 공기를 비교하는 것으로 쉽게 구분할 수 있지만 진동과 초음파는 매질의 차이가 아니므로 주파수라는 개념을 알고 있어야 한다진동의 실용적 활용 주파수는 0~20,000Hz정도이며 소음은 16~8,000Hz인 반면에 초음파는 2kHz~100kHz를 의미한다물론 그 이상은 전파(MHz)영역이다.  설비진단에 초음파가 사용되기 시작한 것은 아무래도 사람이 들을 수 없는 음 또는 음향진동에서 기계의 상태에 관한 정보(신호)를 포함하고 있을 것이라는 추측에서 시작했을 것이다그래서 초음파는 공기음(Airborne), 고체음(Structure borne)을 모두 포함하는 영역이다.

초음파의 설비진단에의 적용
초음파는 가청주파수(20Hz~20kHz)를 상위하는 파동(종파)으로서 투과성질이 있고 에너지를 집적할 수 있는 장점이 있다사용처는 무궁무진하며 자동차 후방감지기에서부터 시작하여 가장 많이 사용되는 곳은 아무래도 의학과 군사용으로 말할 수 있다.  우리 산업용에 사용되는 예도 많아서수위감지기나비파괴검사로 아주 많이 사용되고 있다.  기계진단용으로 사용되는 초음파는 고체나 기체의 마찰에 의해서 발생되는 파동을 수동적으로 계측하여 분석하여 기계(설비)의 결함상태를 파악하는 것이다.

영역구분
진동 및 기타
초음파
이론
FFT spectrum분석, wave분석공간분석, MCSA(전류분석등의 패턴 분석학문수준
측정한 자료를 가청영역으로 변환하여 귀나 시각적으로 듣고 판단하거나, Level(uV)을 측정하여 비교한다.
측정방법
측정오차에 매우 염려하며공진에 대한 고려여러 방향에서 측정하여 방향성을 고려한다.
한 곳을 수직으로 접촉 측정하나음향센서로 근접비접촉 측정할 수도 있다.
기계의 속도
(주파수대역)
고속에 적용초고속 및 초저속의 기계는 별도의 기법 활용측정어려움
저속고속의 음향진동특성을 비교적 쉽게 관찰가능.
판단기준
보통주파수영역에 도달한 상태로 기계의 상태판단(30Hz~30kHz),
ISO(10816, 7919,2631) 등 절대적인 기준과 상대적인 기준
결함의 초기발견(40kHz), 누설(70kHz), 전기(300kHz) 등 제조사 별로 특징과 사양이 다름.
투자비 회수율
고가의 투자장기적인 효과 예상
Assembly detector구성즉각적인 설비상태판단.
Leakage
(공기,전기)
전문장비 추가로 가능다른 설비와 상호비교하여 판단.
누설의 위치와 양코로나 방전상태 등을 즉각 판단.
해석측면
장기적인 설비의 상태를 예상하는 근거(고유주파수결함이력 등)
즉각적인 상태 및 변화상태를 감지하는 현상의 조치.

위의 비교는 인체의 진단과 비교하면 청진기(진동)과 초음파촬영으로 비교할 수 있다중요한 점은 “직접 듣거나 보고 판단한다.”는 점이다.

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr 


관련 Tag
 초음파, Ultrasonic


2018년 5월 12일 토요일

진동모니터링설계사례-FA 조립 및 생산라인 (자동제어 및 반복 조립라인)

진동모니터링설계사례-FA 조립 및 생산라인 (자동제어 및 반복 조립라인)
-------------------------------------------------------------------------------------
최근 많이 이슈화 되고 있는 4차산업의 혁명을 이야기 하기 전에 기반이 되는 스마트공장에 대한 관심이 뜨겁다스마트 공장은 과거 인력의 감축을 목표로 한 로봇의 배치나 자동화의 플랜트 이미지를 넘어서 최대 생산효율을 산출하기 위한 생산신뢰성 구축품질최적화고장자동예측자동화 최적화 등을 포함하고 있는데 이 중에서도 생산성에 크게 영향을 줄 수 있는 설비고장의 모니터링시스템이 매우 중요시화되고 있다모니터링시스템의 설계는 설치만 하면 모든 고장을 줄일 수 있을까그리고 설치를 통해 모든 설비의 수명을 예측하거나 엄청난 투자비 이상을 되찾을 수 있을까?

자동제어가 적용된 조립 및 반복 생산라인(FA)에 대한 모니터링시스템 설계에 대한 사례

본 설비의 구조는 사출주입성형세척조립포장 등을 연속적으로 수행하는 반복 조립생산라인으로 공산품이나 작은 조립생산품생활제품 그리고 대형 조립 및 자동차부품과 반도체전자제품의 조립까지를 포함하여 가장 광범위하게 사용되고 있는 생산장치이다모터와 각종 펌프공기 및 팬압축기진공장치와 진공펌프벨트구름베어링 등 다양한 설비구성요소를 가지고 있다.

이러한 공정에 사용되는 설비류는 생산을 지원하는 입장이므로 설비제조사에서 각종 센서를 포함한 자동제어장치가 설치되어 있으며 설계자는 생산의 속도나 제품의 품질제어까지를 확인할 수 있는 특성인자(Feature)를 설비에 장착하였다그리고 그 특성을 잘 파악하기 위하여 매뉴얼도 구성되어 있고 계속 생산자와 협의하여 맞춤형 기계로 생산과 품질을 최대화 하고 있다설계자는 그 설비를 가장 잘 알고 있고 사용자는 그 설비의 문제를 가장 잘 알고 있다문제가 있어야 설계자는 재 설계할 기회를 찾는다.
여기에 한층 더 나아가서 스마트 공장과 메인트넌스 입장에서 살펴본다면 이렇다.
자동조립라인을 구성하고 있는 설비구성요소의 고장은 단순히 빠른 교체에 의존하고 있으므로 유지보수에 관한 입장에서는 완전히 BM(Breakdown maintenance)의 수준에 머물고 있다 할 수 있다생산설비의 MTBF가 잦더라도 MTTR이 짧은 것에 만족하고 있는 상태이므로 설비구성요소의 불필요재고량은 별로 관심대상이 아닌 것이다그런데 스마트 공장의 개념은 이 생각을 깰 것을 요구한다개인적인 의견으로는 기존 공장에서 얻는 눈앞의 생산량을 상태기반 또는 예측기반 메인트넌스와 비교해도 크게 설득될 것 같지는 않지만설비구성요소의 불필요재고량에 대한 설득은 여지가 있다왜냐하면 빨리 교체하기 위해 많은 량의 비싼 설비에 대하 재고량을 안고 갈 필요가 없을 수 있는 방법이 있기 때문이다한 사례로 설비제조사에서도 하지 않은 모니터링시스템을 장착하려면 어떻게 해야 하는지?에 대한 문의가 있어서 답변사례를 담았다.

자료를 잘 확인하였습니다.
안타깝게도 상태기반 모니터링시스템에서 잘 응용하는 모터베어링이나 벨트는 관찰할 필요가 없다고 하셨으므로 제안드릴 내용이 많지 않습니다. (제조사 설계팀도 하지 못한무엇이 이상?현상이 될까?를 저희가 미리 알 수는 없습니다.)
이상징후를 위해서 진동센서를 이용하려면우선 문제가 되는 순위(FEA)를 알고 있어야 합니다.
무엇이 고장이 자주 생기거나어떤 불량생산품이 생기거나 하는 순위를 알려주시고,
현장에 방문하여 센서의 적용유무를 판단한 후그 다음 제안하는 방법이 있겠습니다.

송구합니다만지금으로서는 어쩔 수 없군요품질이든 생산량이든 고장이든 어떠한 문제가 있어야 모니터링 시스템에 대한 설계와 그 제안을 할 수 있습니다.
고장이 문제가 있고 이 것이 생산과 품질 그리고 고장 부품 재고량과 공간확보교체시간확보 등에 어려움이 연관이 있다고 생각하시면 모니터링시스템을 통해서 고장을 일으키는 문제를 예측하여 미리 교체할 수 있도록 할 수 있습니다상태모니터링시스템(CMS)이란 이런 것입니다. >

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr 

키워드
진동센서가속도센서, Acceleration, Accelerometer, 진동측정방향진동측정위치, VMS 센서, Online monitoring용 진동센서, CMS, VMS, 모니터링시스템설계


2018년 5월 5일 토요일

Gear frequency-5-기어의 진동원인들

Gear frequency-5-기어의 진동원인들
-----------------------------------------------------------------
기어박스는 변속을 하여 피동부에 동력을 전달하는 기계요소(벨트체인 등)중의 하나로서 다른 유사 요소와 가장 큰 특징은 강한 토오크를 전달할 수 있다는 것이다따라서 고속의 동력으로 저속의 강한 토오크를 필요로 하는 곳은 대부분 강한 부하를 받는 곳이다기어박스는 특히 시멘트의 견인 및 파쇠타이어의 파쇠 및 압출열차의 빈번한 동력전달 등에서 감속기로 활용된다반면에 가스생산의 고압 토출에 사용되는 기어박스는 증속의 회전변경을 위해 사용되는 경우도 있다다시 한번 살펴보면 기어박스는 절대로 홀로 움직여서 활용될 수 있는 기계요소가 아닌 것을 확인할 수 있다그래서 진동이 발생한다.

Gear box의 진동원인
모든 Gear Box는 다른 기계들과 연결되어 있다따라서 그로부터 많은 영향을 받고 있다.  그러나Gear 자체의 문제점도 있는데 예를들어 Pitch Line이 맞지 않거나 편심, Tooth간 간격의 불일치 등으로Gear 진동이 발생하고 있다. Gearbox자체의 결함과 GearBox에 영향을 주는 외부결함을 정리하면 다음과 같다.

Gearbox자체의 내부결함
Gearbox에 영향을 주는 외부결함

1.     제작상의 결함 (Manufacturing Defects)
2.     부적절한 조립 (Improper assembly)
3.     과도한 마모 (Excessive wear)
4.     부적당한 윤활유 (Inadequate Lubrication) 및 오염(Contaminator)
5.     Box내 변속축간 정렬 불량 (Misalignment)
6.     금속 자체 결함 (Metal Fatigue)
7.     과도한 부하 (Over loading)
8.     베어링의 마모 및 조립윤활불량정렬불량
9.     부족하거나 과도한 백래쉬


1.     구동부로부터의 결함전달(모터결함질량불평형축정렬불량벨트 등)
2.     피동부로부터의 결함전달(펌프, Agitator, 공작기계바이트 자려진동)
3.     바닥으로부터의 결함(지지이완, Soft foot, 전기적 누설의 전달)
4.     빈번한 부하변동역회전

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr 


키워드
기어진동기어박스베어링진동사이드밴드, GMF, 기어 맞물림 주파수축정렬불량인 기어박스

2018년 4월 28일 토요일

진단을 하기 위한 인지능력

진단을 하기 위한 인지능력
-------------------------------------------------------------------------------------
요즈음 한창 사람의 수준을 넘나들거나 능가하는 인공지능의 미래에 대해서 걱정하고 있는 때가 지나가고 있다바둑을 인공지능에게 지고 있고 언어나 기술패턴을 데이터베이스에 완벽하게 입력하기만 하면 big data를 이용한 원하는 결과를 산출할 수 있는 수준은 이미 구축되었다안타깝게도 로봇이 인간이 할 수 없는 것보다 인간이 할 수 있는 잡무를 많이 빼앗듯이 또는 대체할 수 있듯이 인공지능도 그렇게 될 가능성이 높다고 생각한다그래서 분석가가 없어질 직업의 순위에 있는 것이다특히인공지능은 학습을 할 수 있으므로 이 것은 곧 가장 어려운 난관인 완벽하게 입력도 할 수 있다는 것을 의미하는 것이다그리고 사람이 인지하는 능력 중세서 패턴분석기능도 아주 중요한데 이 것도 이미 점령당할 수 있는 요소인 것 같다.


설비진단을하기위한 컨설턴트의 인지능력
기계가 아픈 곳을 진단하는 첫 번째 절차는 이상현상의 모니터링에 의한 보고이다이를 잘 측정하도록 지시하고 최고의 자료를 입력한다그리고 두 번째 진단절차는 데이터분석이다설계를 분석하고 설치와 부하를 확인하며 이력자료와 현상그 밖의 이상정보를 사람의 database(두뇌)에 입력한다이 때 인간은 전문지식을 총 동원하여 패턴을 찾고자 하는데 즉유전자분석절대기준에 의한 평가상대적인 상호적인 연관성의 분석분포도시간과 공간의 분석 등을 이용하며 빠짐이 없고 빨리 수행할수록 정확한 결과를 산출할수록 좋은 분석가로서 인정받는다.  여기까지는 언젠가 인공지능이 분석할 때가 올 것이다한 개만 만들어지면 그 파급효과나 전달효과는 매우 빠를 것이기 때문에 어쩌면 순식간에 벌어질 수도 있다그런데 인공지능이 하기 힘들고 해서는 안 되는 것이 있는데 바로 최종판단(final decision)’이다이 것은 전체시스템을 교체하고 생산을 중단하고 측정방법이나 측정결과의 판단대체방법교체시점의 파악 등이 이에 해당되는 예로 볼 수 있을 것이다.
어떤 인공지능도 책임을 질 수 는 없고 책임을 지게 해서도 안 된다왜냐하면 책임에는 권리도 주어줘야 하기 때문이다이 원칙은 설비진단이 아닌 모든 AI의 기본이어야 할 것이다여기에 윌스미스가 주연으로 연기했던 SF영화 중 AI의 인공지능을 가진 로봇의 절대3원칙을 살펴보기로 한다.

 "1. 로봇은 인간에 해를 가하거나 혹은 행동을 하지 않음으로써 인간에게 해가 가게 해서는  된다.

2. 1원칙에 위배되지 않는  로봇은 인간의 명령에 복종해야 한다.

3. 1,2원칙에 위배되지 않는  로봇은 자신을 지켜야 한다"

키워드
AI, 인공지능설비진단진동분석,

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 4월 21일 토요일

상태감시와 예지(prognosis)

상태감시와 예지(prognosis)
----------------------------------------------------------------
구름베어링의 상태를 감시하고 결함을 찾아내는 절차는 상태감시(Condition Monitoring)의 핵심이자 안전관리와 자산관리의 가장 기본적인 과정이다구름베어링은 회전체의 토오크와 하중을 받으며 고체와 고체사이에 마찰열을 윤활을 통해 가급적 직접적인 접촉을 막아서 방지해야 하는 임무를 가지고 있다이 상태를 파악하여 언제 고장이 날지 언제까지 수명이 유지될 수 있을지를 파악하고 평가하는 것은 과학과 기술을 떠나서 예술에 가깝다고 말하는 이도 있다비록 결함은 여러 분석적인 기법에 의해서 과학적으로 검출될 수 있지만 결함의 심각도 평가는 특히 예술이라 할 수 있을 이유는 저진폭의 신호와 노이즈 그리고 산업현장의 광범위한 다양성이 존재하기 때문이다.


상태평가와 예지

베어링 결함은 낮은 진폭의 신호를 발생시키고 베어링 상태와 반드시 연관되지는 않기 때문에 진폭은 베어링 상태의 신뢰할 만한 지표라고 할 수 는 없다베어링 주파수와 측대역의 평가가 반드시 병행되어야 한다비록 외륜의 결함이 가장 일반적인 결함이라도 가장 심각한 것은 아니다구름요소 및 케이지 결함도 베어링 수명을 단축시키고 예측하기 힘들다따라서 분석가는 유사한 결함을 가진 사례를 경험하여 기계의 결함이 인식된 이후 안전하게 운전될 수 있는 잔여시간에 대한 평가를 가능하도록 한다또한 결함심각도와 관련하여 기계의 형식에 따른 다양한 경험을 쌓아야 한다.
예지(prognosis)란 인간의 잔여수명을 결정하듯이 회전기계장치의 잔여수명을 결정하는 과정이다이러한 기술은 발전이 많이 더딘데 아직까지 베어링 잔여수명을 결정하는 실질적인 방법은 존재하지 않는다결함의 증가률에 대한 불확실성 및 가변성과 결함의 심각도를 평가하기 위해서 사용되는 원격측정기법의 특성 때문에 예지는 매우 어려운 절차이다한가지 예를 살펴보면 결함성장행태의 변동을 밝히는 피로균열전달모델을 사용한다거나 상태를 나타내는 특별한 특성(feature)을 찾기 위해 big data를 이용한다거나 하는 등인데 주된 문제점은 결함신호와 결함크기라 치명적인 결함인가의 연관성이 확연하지 않다는 것산업환경에서처럼 실험실의 결과가 잘 맞는 확률은 아주 적다는 것이 주요한 약점일 수 있겠다무엇보다 산업현장에서의 데이터는 수집이 어렵고 결과와 원인도 너무나도 다양하고 변수가 많다는 것이 한계점이다.

키워드
온라인 모니터링시스템, VMS

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr

2018년 4월 14일 토요일

상태모니터링 측정시 진동센서의 측정방향과 위치 (HVA, ZXY, INOUT, DE,NDE)

상태모니터링 측정시 진동센서의 측정방향과 위치 (HVA, ZXY, INOUT, DE,NDE)
-------------------------------------------------------------------------------------
같은 지점과 방향을 측정하지 않거나 측정하는 사람에 따라서 그 설정값이 다르면 설비의 건강상태를 모니터링할 수 없다더욱이 정밀 진단을 한다는 것 자체가 의미가 없게 된다진동측정(상태모니터링설비진단온라인모니터링)을 위한 지점과 방향의 범세계적으로 약속된 이유도 이러한 적절한 측정점의 설정과 정의가 얼마나 중요한가를 의미한다 할 수 있을 것이다다시 말하면 어느 위치를 어떻게 측정한 것인지가 어떤 단위로 평가하는지 보다 더 기본적인 설계에 적용할 사항인 것이다. Axial방향이 무엇인지.. NDE는 무엇의 약자인지..Outboard는 어디인지 등을 진동전문가라면 당연히 알고 있어야 하는 실무용어로 살펴보기로 한다.

센서의 측정위치와 방향2
물체(구조 또는 기계)가 진동하는 근원과 물체의 거동(Mode Shape)을 확인하기 위해서는 가장 그 상태의 변동을 잘 확인하고 관리할 수 있는 측정점을 선정해야 하는데 이 때 일정한 규칙이 존재한다계측 제조사 및 실무용어에서 사용하는 용어정비용어와 설계용어, ISO, API에서 사용하는 용어 그리고 연구시험용으로 사용하는 용어가 약간씩 다르다고 어느 하나만 고집할 필요가 없다진동전문가라면 이를 모두 알고 있어야 진정한 전문가이다.
각 용어에 대한 설명과 차이점에 대해서 정리해 보았다회전기계의 진동모니터링측면에서 여기서 하나 우리가 기본적으로 알고 있어야 하는 것은 진동을 측정하는 위치는 움직이는 축(Shaft)이 아닌 그 진동의 지지와 전달을 담당하는 베어링(Bearing)의 하우징(Housing)의 위치라는 것이다따라서 그 위치가 가지고 있는 특성(분해조립이 잦은 위치커플링이나 기어박스를 기준으로 양쪽 또는 한쪽에 배치되어 있다는 점하우징 자체도 움직인다는 점구름베어링의 경우 축의 진동을 점 또는 선접촉에 의해 전달받는다는 것)을 이해하고 있어야 한다는 것이다.



측정위치단어
설명
부가설명
Horizontal(H), Vertical(V), Axial(A)
수평수직축방향
수평으로 설치된 기계(shaft;축과 평행인방향을 축방향(A)으로 하고 지면에 수평으로 축방향과 직각인 방향은 수평(H), 지면방향으로는 수직(V)방향으로 한다.
수직으로 설치된 기계(shaft;축과 평행인방향을 축방향(A)으로 하고 지면에 수평으로 직각을 이루는 두 방향을 수평(H), 수직(V)방향으로 한다이 때 배관의 유로 흐름에 수직인 방향을 주로 수평(H, X)으로 하고 유로 흐름방향을 수직(V,Y)으로 한다.
X, Y, Z
3축방향센서방향

현장용어(ISO)
-축방향을 Z로 하고수평은 X, 수직은 Y (XYZ= HVA)
연구시험용어(센서제조사계측 및 물리학)
-측정면에 수직인 방향(Z), 이때 상향;수직은(X), 나머지 평행방향,수평은(Y)로 한다(ZXY= HVA)
Inboard, Outboard
부하측(DE), 반부하측(NDE)
커플링(Coupling)을 중심으로 커플링측 베어링하우징을 Inboard=DE(Drive End)=부하측으로 하며 커플링의 반대측을 Outboard=NDE(Non Drive End)=반부하측으로 부른다.
커플링의 기능으로 축방향 진동(축력)에 대한 완충작용을 하기도 하지만 보통 반부하측에 Thrust베어링이 설치되어서 이 한계를 정하므로 이 부분을 Free측이라고 하기도 한다.

최근에는 3축센서의 사용이 많아 지므로 더욱 이 방향에 대해 주의가 요구된다잘 못 측정이 이루어 지면 전혀 다른 방향으로 분석과 진단이 진행되기 때문이다다음은 기타 진동측정위치의 설정에 참조할 사항에 대해서 정리하였다.

   (1) 진동 측정 위치는 베어링베어링 페데스탈혹은 근접한 계측이 용이한 케이싱 외부 등을 선택한다발판 난간 등 국부적인 강성 부족으로 진동이 증폭되는 위치는 피한다.
   (2) 수평 회전기계에서는 수평수직의 2 방향으로부터 계측한다혹은 직각 2 방향이라면 경사진 방향(위상)으로부터도 좋다.
   (3) 수직 회전기계에서는 평면상의 두 방향(동서남북)으로부터 측정한다이 계측을 높이 방향으로 옮겨 가며수 개의 위치에서 측정하여 가장 높은 값을 나타내는 위치를 이후의 간이 진단 측정위치로 한다.
   (4) 측정위치와 방향(위상)은 측정치 기입용지에 화살표 등으로 명기한다특히 측정위치 및 측정방향에 관하여 구두 혹은 문서에 의한 지시만으로는 매우 틀리기 쉬우므로확실하게 기기의 도면에 측정위치 및 측정방향을 기입하는 것이 좋다.

키워드
진동센서가속도센서, Acceleration, Accelerometer, 진동측정방향진동측정위치, Horizontal, Axial, Inboard, 커플링, DE, NDE, 부하측 진동

All copyright  한국CBM(주)  written by BISOPE , vs72@naver.com, 070-4388-0415,  www.kCBM.kr